首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1627986篇
  免费   37547篇
  国内免费   7067篇
工业技术   1672600篇
  2021年   15990篇
  2020年   13381篇
  2019年   17369篇
  2018年   20166篇
  2017年   19720篇
  2016年   25438篇
  2015年   20321篇
  2014年   31604篇
  2013年   92196篇
  2012年   40772篇
  2011年   54881篇
  2010年   46727篇
  2009年   54201篇
  2008年   50344篇
  2007年   47703篇
  2006年   48532篇
  2005年   43303篇
  2004年   44963篇
  2003年   44519篇
  2002年   43063篇
  2001年   40372篇
  2000年   38386篇
  1999年   38244篇
  1998年   64072篇
  1997年   50273篇
  1996年   40032篇
  1995年   34449篇
  1994年   31660篇
  1993年   31600篇
  1992年   26610篇
  1991年   23907篇
  1990年   24209篇
  1989年   23099篇
  1988年   21733篇
  1987年   19910篇
  1986年   19373篇
  1985年   22702篇
  1984年   22469篇
  1983年   20408篇
  1982年   19355篇
  1981年   19529篇
  1980年   18187篇
  1979年   18566篇
  1978年   17848篇
  1977年   18403篇
  1976年   20575篇
  1975年   16001篇
  1974年   15476篇
  1973年   15628篇
  1972年   13124篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Automation and Remote Control - A linear-quadratic positional differential game of three persons is considered. Coefficient criteria are established under which there is no Nash equilibrium...  相似文献   
52.
53.
54.
Cell temperature and water content of the membrane have a significant effect on the performance of fuel cells. The current-power curve of the fuel cell has a maximum power point (MPP) that is needed to be tracked. This study presents a novel strategy based on a salp swarm algorithm (SSA) for extracting the maximum power of proton-exchange membrane fuel cell (PEMFC). At first, a new formula is derived to estimate the optimal voltage of PEMFC corresponding to MPP. Then the error between the estimated voltage at MPP and the actual terminal voltage of the fuel cell is fed to a proportional-integral-derivative controller (PID). The output of the PID controller tunes the duty cycle of a boost converter to maximize the harvested power from the PEMFC. SSA determines the optimal gains of PID. Sensitivity analysis is performed with the operating fuel cell at different cell temperature and water content of the membrane. The obtained results through the proposed strategy are compared with other programmed approaches of incremental resistance method, Fuzzy-Logic, grey antlion optimizer, wolf optimizer, and mine-blast algorithm. The obtained results demonstrated high reliability and efficiency of the proposed strategy in extracting the maximum power of the PEMFC.  相似文献   
55.
A promising electrocatalyst containing variable percentage of V2O5–TiO2 mixed oxide in graphene oxide support was prepared by embedding the catalyst on Cu substrate through facile electroless Ni–Co–P plating for hydrogen evolution reaction. The solvothermal decomposition method was opted for tuning the crystalline characteristics of prepared material. The optimized mixed oxide was well characterized, active sites centres were identified and explained by X-ray diffraction, high resolution tunnelling electron microscopy, scanning electron microscopy coupled with energy dispersive X-ray and X-ray photon spectroscopy analysis. The structural and electronic characteristics of material was done by fourier transform infrared spectroscopy and the electrochemical behaviour of the prepared material was evaluated by using Tafel plot, electrochemical impedance analysis, linear sweep voltammetry, open circuit analysis and chronoamperometry measurements. The results show the enhanced catalytic activity of Ni–Co–P than pure Ni–P plate, due to synergic effect. Moreover, the prepared mixed oxide incorporated Ni–Co–P plate has a high activity towards HER with low over potential of 101 mV, low Tafel slope of 36 mVdec?1, high exchange current density of 9.90 × 10?2 Acm?2.  相似文献   
56.
Monitoring the temperature in liquid hydrogen (LH2) storage tanks on ships is important for the safety of maritime navigation. In addition, accurate temperature measurement is also required for commercial transactions. Temperature and pressure define the density of liquid hydrogen, which is directly linked to trading interests. In this study, we developed and tested a liquid hydrogen temperature monitoring system that uses platinum resistance sensors with a nominal electrical resistance of approximately 1000 Ω at room temperature, PT-1000, for marine applications. The temperature measurements were carried out using a newly developed temperature monitoring system under different pressure conditions. The measured values are compared with a calibrated reference PT-1000 resistance thermometer. We confirm a measurement accuracy of ±50 mK in a pressure range of 0.1 MPa–0.5 MPa.  相似文献   
57.
Recent advances in three‐dimensional (3D) printing have enabled the fabrication of interesting structures which are not achievable using traditional fabrication approaches. The 3D printing of carbon microtube composite inks allows fabrication of conductive structures for practical applications in soft robotics and tissue engineering. However, it is challenging to achieve 3D printed structures from solution‐based composite inks, which requires an additional process to solidify the ink. Here, we introduce a wet 3D printing technique which uses a coagulation bath to fabricate carbon microtube composite structures. We show that through a facile nanogrooving approach which introduces cavitation and channels on carbon microtubes, enhanced interfacial interactions with a chitosan polymer matrix are achieved. Consequently, the mechanical properties of the 3D printed composites improve when nanogrooved carbon microtubes are used, compared to untreated microtubes. We show that by carefully controlling the coagulation bath, extrusion pressure, printing distance and printed line distance, we can 3D print composite lattices which are composed of well‐defined and separated printed lines. The conductive composite 3D structures with highly customised design presented in this work provide a suitable platform for applications ranging from soft robotics to smart tissue engineering scaffolds. © 2019 Society of Chemical Industry  相似文献   
58.
This paper presents part of the work ComEd and Quanta Technology have performed to quantify the locational and temporal value of DER to avoid distribution grid upgrade investments. It focuses on the formulation of a robust and efficient algorithm for DER optimal dispatch on a distribution feeder to mitigate the violation of current and voltage limits using the allocated cost of capacity and locational marginal value of real and reactive DER injection/withdrawal.  相似文献   
59.
Theoretical Foundations of Chemical Engineering - Calcium formate is widely used in construction, tanning, and textile manufacture and as an E238 biological additive in cosmetology and the food...  相似文献   
60.
The production of hydrogen, a favourable alternative to an unsustainable fossil fuel remains as a significant hurdle with the pertaining challenge in the design of proficient, highly productive and sustainable electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, the dysprosium (Dy) doped copper oxide (Cu1-xDyxO) nanoparticles were synthesized via solution combustion technique and utilized as a non-noble metal based bi-functional electrocatalyst for overall water splitting. Due to the improved surface to volume ratio and conductivity, the optimized Cu1-xDyxO (x = 0.01, 0.02) electrocatalysts exhibited impressive HER and OER performance respectively in 1 M KOH delivering a current density of 10 mAcm?2 at a potential of ?0.18 V vs RHE for HER and 1.53 V vs RHE for OER. Moreover, the Dy doped CuO electrocatalyst used as a bi-functional catalyst for overall water splitting achieved a potential of 1.56 V at a current density 10 mAcm?2 and relatively high current density of 66 mAcm?2 at a peak potential of 2 V. A long term stability of 24 h was achieved for a cell voltage of 2.2 V at a constant current density of 30 mAcm?2 with only 10% of the initial current loss. This showcases the accumulative opportunity of dysprosium as a dopant in CuO nanoparticles for fabricating a highly effective and low-cost bi-functional electrocatalyst for overall water splitting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号